On Dirichlet Series and Petersson Products for Siegel Modular Forms

نویسندگان

  • Francesco Ludovico CHIERA
  • Francesco Ludovico
  • CHIERA
چکیده

— We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight k > n/2 has meromorphic continuation to C. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight k > n/2 may be expressed in terms of the residue at s = k of the associated Dirichlet series. Résumé. — On démontre que la série de Dirichlet à la Rankin-Selberg associée à toute paire de formes modulaires de Siegel (non nécessairement paraboliques) de degré n et poids k > n/2 admet un prolongement méromorphe à C. En outre, on montre que le produit de Petersson de toute paire de formes modulaires de carré-intégrable et de poids k > n/2 a une expression en termes du résidu en s = k de la série de Dirichlet associée. Ces résultats sont bien connus pour les formes paraboliques. La méthode que nous adoptons généralise celle qui a été introduite par Maass (dans le cas n = 2) et se base sur l’utilisation de certains opérateurs différentiels invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two

The Rankin convolution type Dirichlet series DF,G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series DF,G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinati...

متن کامل

Almost holomorphic Poincaré series corresponding to products of harmonic Siegel–Maass forms

We investigate Poincaré series, where we average products of terms of Fourier series of real-analytic Siegel modular forms. There are some (trivial) special cases for which the products of terms of Fourier series of elliptic modular forms and harmonic Maass forms are almost holomorphic, in which case the corresponding Poincaré series are almost holomorphic as well. In general, this is not the c...

متن کامل

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

On Ramanujan and Dirichlet Series with Euler Products

In his unpublished manuscripts (referred to by Birch [1] as Fragment V, pp. 247-249), Ramanujan [3] gave a whole list of assertions about various (transforms of) modular forms possessing naturally associated Euler products, in more or less the spirit of his extremely beautiful paper entitled "On certain arithmetical functions" (in Trans. Camb. Phil. Soc. 22 (1916)). It is simply amazing how Ram...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008